Zeros of Generalized Krawtchouk Polynomials

نویسندگان

  • Laura Chihara
  • Dennis Stanton
  • DENNIS STANTON
چکیده

The zeros of generalized Krawtchouk polynomials are studied. Some interlacing theorems for the zeros are given. A new infinite family of integral zeros is given, and it is conjectured that these comprise most of the non-trivial zeros. The integral zeros for two families of q-Krawtchouk polynomials are classified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Integral Zeros of Krawtchouk Polynomials

We derive new conditions for nonexistence of integral zeros of binary Krawtchouk polynomials. Upper bounds for the number of integral roots of Krawtchouk polynomials are presented.

متن کامل

More zeros of krawtchouk polynomials

Three theorems are given for the integral zeros of Krawtchouk polynomials. First, five new infinite families of integral zeros for the binary (q = 2) Krawtchouk polynomials are found. Next, a lower bound is given for the next integral zero for the degree four polynomial. Finally, three new infinite families in q are found for the degree three polynomials. The techniques used are from elementary...

متن کامل

Real zeros of Meixner and Krawtchouk polynomials

We use a generalised Sturmian sequence argument and the discrete orthogonality of the Krawtchouk polynomials for certain parameter values to prove that all the zeros of Meixner polynomials are real and positive for parameter ranges where they are no longer orthogonal. AMS MOS Classification: 33C45, 34C10, 42C05

متن کامل

Zeros of Meixner and Krawtchouk polynomials

We investigate the zeros of a family of hypergeometric polynomials 2F1(−n,−x; a; t), n ∈ N that are known as the Meixner polynomials for certain values of the parameters a and t. When a = −N, N ∈ N and t = p , the polynomials Kn(x; p,N) = (−N)n2F1(−n,−x;−N; p ), n = 0, 1, . . .N, 0 < p < 1 are referred to as Krawtchouk polynomials. We prove results for the zero location of the orthogonal polyno...

متن کامل

Discrete analogues of the Laguerre Inequality

It is shown that ∑m j=−m(−1) f(x−j)(f(x+j) (m−j)!(m+j)! ≥ 0, m = 0, 1, ..., where f(x) is either a real polynomial with only real zeros or an allied entire function of a special type, provided the distance between two consecutive zeros of f(x) is at least √ 4− 6 m+2 . These inequalities are a surprisingly similar discrete analogue of higher degree generalizations of the Laguerre and Turan inequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014